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ABSTRACT

3I/1S

The variational problem of minimizing the energy of a trial
wave function which is constrained to give the known theoretical
or experimental expectation value of an operator is discussed.

A perturbation appfoach is developed which leads to simple
equations for estimating the effect of the constraint on the
expectation values of other operators, and the increase in energy
due to the constraint. It is shown that for hypervirial operators
the constraint procedure for satisfying the corresponding hyper-
virial theorem leads to equal and opposite results from the
variational procedure. The theory is extended to cover the effect
of constraints on second-order properties and multiple constraints.
The perturbation equations are applied to Robinson's (1957)

calculations on the lithium hydride molecule, previously discussed

by Rasiel and Whitman (1964). C:Z~LZCA4P~'
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INTRODUCTION

There has been a lot of interest recently in the calculation of
the expectation values of operators other than the energy. It is well-
known that if the error in a variationally determined wave function is
of order A s then whereas the energy is correct to order A B
the error in the expectation values of other operators is of order

* 1

[& . An interesting approach introduced by Mukher ji and Karplus
and developed recently by Whitman and his collaboratorsz’3 is to
constrain the variational wave function to give the known theoretical
or experimental value ,L- of the expectation value M of some operator
C){u . This constraint will cost a certain amount of energy AE,
but if the difference l&ru, between fL_ and the free-variational
value of M is small, then DE will only be of order [vu?.
The hope is that, for a negligible sacrifice in energy, the constrained
wave function will lead to more accurate expectation values of other
operators than the unconstrained wave function. This hope has been
realized in calculations on hydrogen fluoridel, lithium hydride2 and
heliumB.

The object of this paper is to present a new formulation of the
constrained variational principle and to propose a perturbation
approach based on the free variational principle. Rasiel and Whitman2
took the first step towards such an approach but did not develop it.

* Unless the operator commutes with the Hamlltonlan, in which case
the error is also of order A&

1. A. Mukherji and M. J. Karplus, J. Chem. Phys., 38, 44 (1963).

2. Y. Rasial and ' D. R. Whitman, Bull. Am. Phys. Soc., 9, 231 (1964);

" J. Chem. Phys. (to be published). :

3. D. R. Whitman and R. Carpenter, Bull. Am. Phys. Soc., 9, 231 (1964).




CONSTRAINED VARIATIONAL PRINCIPLE

Let f be the Hamiltonian for the system of interest and let yb

and < & Dbe the approximate ground state wave function and energy

(non-degenerate) satisfying the familiar variational principle

8E = 0 where E = <q{)‘£\‘]—{>/<\72,@> (1)

and QZ is a trial wave function. The explicit form of the

variational equation can be written

ST, G- e)yY> = 0. (2)

Consider now the constraint on 'f : M= M where

M= <EME>/KE,E> (3)

*
and rb is a constant. The constrained variational principle

may be written
SE + ASM =0 (4)

where A is a Lagrange multiplier, or in the more explicit form

{S¢g, [+ AeM-pmy -E]E> = 0 (5)

* 1t is assumed that is a possible value of M ; that is,
does not exceed a bound of M. In the case of linear variation
functions of the type (12) this is equivalent to assuming that m
lies between the smallest and largest eigenvalues of the matrix
representative ™M of M. in the basis set.




This equation is equivalent to the free variational principle

3E = 0 where

E=<§(,#‘£ SI< @, ¢ > (6)
and # is the fictitious Hamiltonian
— #H o= n o+ N(M- ) @)

The value of the parameter A is fixed by the constraint

condition (3) , which may be written
CE, (M -pH)T> = 0. (8)

However, since A does not occur explicitly in §Z , the

generalized Hellmann-Feynman theorem is valid for changes in A 4;

that is
PF
— = < ¥ (M-pm)¥E ><ET,T >,
2N
(9
Hence the constraint condition is equivalent to FE /™ =0.

The complete statement of the constrained variational principle is

therefore that };, is stationary with respect to variations in the

trial wave function q? and also with respect to variations in the

Lagrange multiplier N . The stationary value of Zi is the




constrained energy E . For the ground state the Q extremum is
a minimum of Ei and the %. extremum is a maximum.

Let E (A ) be the value of & which is stationary with
respect to qu for arbitrary A . Then A is determined by
dE /&N =0 . The elimination of A may be accomplished

formally by the following contour integral

"
- L EQE My

constrained 21 E'O\) > (10)

: where the primes denote differentiation and the contour goes round
.'the smallest zero of E(Q‘) in the complex A-plane. Similarly,
if L( A ) 1is the expectation value of an operator L for
arbitrary A , then

Lconstrained . -
E D

Linegg Variation Functiong

If

¥ - j/;cjgsj (12)

5_where the ¢J‘ are g fixed basis set with overlap matrix S ’

then equation (5) leads to the secular equations

(H-E3%)c = o (13)




where H = ‘}\ + A (M - S ) is the matrix representative
’L

of%.Let

bI\E,k)E— M{B‘{ - E$}, (14)

Then since

AE/AN = — *D/2% (d=0)

, (s
IDNE

the first step in the constraint problem is to solve the equations

DCE,XN )=0 , 3DEMNRN0 ( IW/PE £ 0),
(16)

Rather than discuss further the nature of the solutions for this

particular case, we turn to a general perturbation approach.

PERTURBATION APPROACH

Let us assume that E ()\) can be expanded as a power

series in A over the range of interest, that is

o o
E(A) = 2 A E )_ (17)
w=0
The constraint conditiomn is dE/O‘-)\ = 0 where
dE " _ { R
- = - - . 18
5N M- (18)

nw=|
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Let m be the expectation value of M for the unconstrained
wave function, so that M =m when ok =0 . 1If the error is

[&L.= M- m then it follows from equation (18) by setting A =0

that

E = - A%L . (19)

Hence the constraint condition for A becomes

oo .
A/w 7 vx)n‘fEm. | (20)
n=2

Consider the case in which the unconstrained wave function yL
is a fairly good approximation to the true eigenfunction so that
A%L— is small. Then by equation (20) A is small and may be regarded
as a perturbation parameter, in Reeping with its role in the
Hamiltonian ¢$ of equation (7). By inverting equation (20) A
may be expressed as a power series in Ark. which can be truncated
when sufficient accuracy is achieved. Equation (17) can similarly
be regarded as a perturbation series for the energy, and re-expressed
in powers of Apm if desired.

The first approximation for A from equation (20) is
2
A= ApE® 4 o). (21)

The leading terms in the energy of constraint ANE = E - € are

A = 2D ¢ M@ L oo 2 . (22)




|
By substituting for E(*} from equation (19) and A from equation

(21) we get
bR
AE = - B o AR L oY,
2 E® ¢EP
or
AE = - 82D 4 oo nY . (23)
¢H)

Note that since E

(2)

and A are both of order Avu— , while
E is of order unity in general, the terms formally of 'first
order" and ''second order" are both of order Av&?', and together
are half the "first order" term — A 07u~ .

Since E(z)

is always negative for grqund states it is clear
from equation (23) that the constraint always leads to an increase
in the calculated energy. However, this increase is only of order
ﬁSsz as expected, and will be small if évw, is small and
' E(z)l is large.
Consider the case when Q& is the linear varia;ional function
(12), and 1let Hﬁa, E% be the (j + 1)-th free variational

solutions. In terms of this "unperturbed'" basis the ground state

(j = 0) expression for the second-order coefficient is

/ M., 2
NON | Mg 1™ (24
I €& —€

It follows that \E(z)l is large if a low-lying excited state

couples strongly with the ground state through the operator M.



It can easily be shown that in equation (23) for AE the
condition for the neglect of the term in [»m? compared to that in

A,&z is
|Apml << &2 | e (25)

If E(z) and E(S) owe their magnitudes mainly to a low-lying

excited state j = 1, then (25) reduces to

X
Ol = [ =Moo << Mer (26)

\Mu— Moel

The terms in A of higher order in ZXPM are given in equation (74).

Other Expectation Values

Consider another operator oL whose expectation value in the
free variational approximation is L = <:yQ L ?L > , and let
L = < G_E 5 Zz \E > be the constrained value. It is convenient

to introduce another fictitious Hamiltonian
H o=t + YL = h+ MM -pm) +yL, @D

and let E be the minimum variational energy, so that

L = ( 2E/2Y ) (28)

h’:—.o ”

Let us assume that E can be expanded as a double power series in

A and ¥




E = Z Z A“‘)/k E(n’*) (29)

3
]
v
P
'!
Q

Then

i

z A“ E(n,l) s L = E(Oj]-)' (30)

n=0

L

The change AL = L - A& in the expectation value of x on

constraining the variation is therefore given by

oo
AL = T X g® (31)

a=t

The first approximation for AL corresponding to equation (23)

for AE is
ar = Ape®U @ 4 oo a? (32)

The leading change is therefore determined by the cross coefficient

E(l’l) and will usually be of first order in A/\& .

For the case of the linear variation function (12) the formula

for is (assuming real functions),

/

gL _ o, Z MojLjo (33)
J &€

E(l’l) will vanish, and the constraint will have

It is clear that
little effect on the expectation value of I , unless M and I

interact in second order. They will not interact if the Hamiltonian



h possesses symmetry and the representation of the operator cﬁLJﬁ does

not contain the unit representation.

Second Order Properties

The effect of constraints on second-order properties associated
with an operator Ji can also be estimated by the perturbation

approach. Second-order properties are those of the types

_ | ’ 2. N A
Q = L CTE/T) o, (34)
such as electric polarizability. It follows from equation (29) that

. wtw
Q = 7 N E “')e (35)

h=0
The unconstrained value of @ corresponding to A =0 is
therefore i E(0”2> ; so that the change AQ = Q - 7 due to
constraint is
)
N ~(w)
Ao = 2 N BT (36)
nz |
-t P R E@ ol (37)

For the linear variational function (12) the new coefficient appearing
in this equation may be expressed in terms of the unconstrained basis

set as

u
(1,2 _ ZZ Lo; kLlw + 2 LogLjk My, (38)
( e - ed )( €_o - e&.)

5. J. Q. Hirschfelder, W. Byers Brown(and S. T. Epstein, Advances in
Quantum Chemistry, volume 1, ed. Lowdin, Academic Press, New
York (1965).
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3k ik oo 93k ij’ L ™ Lo SJ‘k -

=
I
=
1
=
o0

where

It can be seen from the equations of this section how easy it
would be to generalize the theory to ccver the constraint of a second-
order property. However ,such a procedure is unlikely to be useful

in practice, and will not be developed here.

(2} C
5 appearing in the

The coefficients E
leading terms for the changes in E, L and Q due to the constraint
M= rL refer to the variational approximation under consideration.
However, if the approximation is a good one, which is a necessary
condition for the success of the perturbation treatment, then the

values of the coefficients given by the variational approximation

will be close to the exact values.

To exhibit the relation of the exact and approximate coefficients,

suppose G) is the projection operator onto the subspace of the
variational function 1} , so that in terms of the unconstrained

orthonormal basis set ij

P =7 Xy (39)
J

Also let O e the part of e complementary to ybii Hlb , the
variational approximation to the ground state eigenfunction of h,

so that

!

O = P - IUXYl = Z XY (40)

J

11



The approximate coefficients may then be written in the form

g(2) <Y, a‘L«'j/c/‘LyL;» , (41)
B0V - <y, T Y S (42)

(L2 _ 2[<¢)I%I{}¢Ly> +

<%I%aﬁlw> + O@Aﬁiﬁz¢>])

(43)

where
'Q} - O(e-1Y v ; L-ree . (44

The exact coefficients are given formally by the same expressions
but now f—*l,so ft\;%h and 0 —> 1 - I XY | , and u)é
are now the ground state eigenfunction and eigenvalue of h.

For certain operators M and ;i the exact coefficients
involve only familiar physical properties. If these are known
experimentally or theoretically it should be easy to make estimates
of the effects of the corresponding constraints on certain of the
calculated properties. This is illustrated by the following examples

*
for molecular systems.

* In this section the Born-Oppenheimer fixed nucleus approximation is
assumed, and all formulae are in conventional atomic units,
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a) Dipole Moment

1f C*L is the dipole moment vector operator for a polyatomic

molecule,

JL—-—%‘ZP-Z,:;, @)

« Lo
. 2
the exact coefficient E'2) = —-é_ X , where o  is the

electric polarizability tensor. The increase in energy on constraining

the dipole moment to its correct value fk is therefore approximately
~n/

= A,u"/l o (46)

where « is the diagonal component of X along the direction

re x

of Alf’, , assumed to be a principal axis.

b) Nuclear Force (Hellmann-Feynman Theorem)

If C}L— is the force vector operator for nucleus oK in a

molecule

X
? = - Z.,( Z Z_f "E"f -+ 2'.( -———-g,; > (47)
-~ +o ¢ Y‘v
£ R;P « «

then by the Hellmann-Feynman theorem the expectation value of ;L

~

should vanish for all nuclei in the equilibrium configuration. The
exact second-order tensor coefficient corresponding to this operator

. . 6
appears in the formula for the force-constant matrix of the molecule.

6. W. Byers Brown, Proc. Camb. Phil. Soc., 54, 251 (1958).
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For a diatomic molecule AB the zz-component along the molecular axis

, . 7,8
can be written in the form °’

(2) I 1 T
E Tk - L%;((‘% Pu +9x)  (4=A,B) (48)
where ?« ig the electron density at nucleus & , k is the
force constant and ﬁx is the zz-component of the field gradient
at nucleus « . Unfortunately, although k and 2K may be

accessible experimentally, f& usually is not.

The expectation value of the total force operator

7 - T 49)

should be zero for all configurations. The correspending second-

order coefficient for a diatomic molecule has the zz-component

E® = Wi b
e ,_%?:K(Ef)d'\-z,() (50)

where R 1is the internuclear distance AB.
. (1,1) M .
The second order cross coefficient E for = dipole
moment and Zi = total nuclear force ?; is particularly simple.

By the oscillator strength sum rule the zz-component is simply

7. Erich Steiner, Ph.D. Thesis, Umiversity of Manchester, England (1961).
8. Lionel Salem, J. Chem. Phys., 38, 1227 (1963).
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where N is the number of electroms. If lﬁ is instead only the

(
force $£ on nucleus & then

s - 2 F 3rAR (52)

where M is here the dipole moment. 1In equation (52) the positive
sign is to be taken for the nucleus with the smaller z-coordinate and
thevnegative sign for the other nucleus. It has been assumed that

the molecule is electrically neutral so that N = %, + zg -

c) Virial Theorem

According to the virial theorem the expectation value of the
operator H = 264 w , where #C and U are the kinetic and

potential energy operators, should be equal to
*
M= - TR -3/2R, . If this condition is not satisfied
[~ &

the wave function may be constrained to do so if desired. The cost

in energy can be estimated from equaticn (23) by using the exact

: . . . 6,7
expression for the second-order coefficient which is ™’

£ . e +2 ‘% R (BeRy) + 1 27 R4y Ry (53)
s &

where RS is the length of bond s and kst are the bond stretching

force constants.

* This is not strictly the original virial theorem, but a closely
related theorem derived by homogeneous scaling. The original
virial theorem leads to

2k + U = — Z R -, 3R/Ra L >

and is only equivalent to the scaled form quoted in the text if the
Hellmann-Feynman theorem is valid.



The conclusion that the energy must incresase in order to satisfy
the virial theocrem appears wrong at first sight. It is well known
that an approximate wave function which does not satisfy the virial
theorem can always be made to do so by introducing a scale parameter
and minimizing the expectation value of the Hamiltonian with respect
to it. This procedure always leads to a decrease in energy. The
paradox is resolved by observing that if the variational function
included coordinate scaling among its degrees of variational freedom,
then the unconstrained function }Lf would already satisfy the
virial theorem, and no further constraint would be necessary. TIf
the virial theorem is not satisfied by yL this implied that the
scale in ﬂ? is not regarded as a possible wvariation.

The intimate relationship between the effects of constraining

an approximate wave function to satisfy a theoretical condition and
the effects of varying the wave function to satisfy the condition
are discussed in the next section for the case in which the condition

can be written as a hypervirial relation.

d) Molecular Geometry

It is also possible to estimate the effect of a constraint
condition on the equilibrium configuration calculated for a
molecule. Consider the simplest case of a diatomic molecule and
let Y, be the equilibrium bond length for the unconstrained

treatment. Impose the constraint

MR) = pe(R) (54)

16
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for every internuclear distance R. Let R, be the experimental

bond length satisfying the equation OE /3R =0, or

2 DE 2€

— 4+ = =0 R=R.)

SR SR (R=Re (55)
where DAE is the energy of constraint given by equations (22) and
(23). Since AR = Re - Y‘e is supposed small we can expand to
get

e 2
}R) = '&Q_AR 4+ O(BR ), (56)

R=Re

where k , is the unconstrained force constant. Therefore,
. DDE
R = — — et (57

. °R
. L. 2 . .
and since AE 1is of order b,& » the error in R, is

effectively of the same order.

CONSTRAINING VERSUS VARYING FOR HYPERVIRIAL THEOREMS
The virial theorem and the Hellman-Feynman theorem for the
total force are particular cases of a general class known as the

hypervirial theorems.g’10 These are relations of the form

Y, [h, W1y > =0, (58)

9. J. 0. Hirschfelder, J. Chem. Phys. 33, 1762 (1960). .
10. S. T. Epstein and J. 0. Hirschfelder, Phys. Rev. 123, 1495 (1960).



and are satisfied by the exact wave function for any cperator W ;
in what follows we shall suppose that 1VL ig hermitian. The
hypervirial theorem {58) can be regarded as the theoretical condition

P = 0 on the expectation value of the hermitian operator M

defined by

M= ([h, W] . (59)

Epstein and Hirschfelder10 have shown that an approximate wave
function can always be made to satisfy any particular hypervirial
theorem by a variational procedure. This‘is done by introducing a
certain mode of variation depending on ¢V\ and making the energy
stationary with respect to this mode. If we wish to modify an
approximate wave function to satisfy a particular hypervirial
theorem we have, therefore, a choice: (a) constrain the wave
function to satisfy M= 0 ; (b) vary the wave function to
satisfy M= 0 . The theory of the constraint procedure (a) and
its perturbation development have been discussed in the preceding
section. In this section a corresponding discussion of the
variational procedure (b) will be given. It turns out that the
procedures are intimately related in that the leading terms in the
perturbation treatments are equal and opposite. 1In order to
exhibit the relationship clearly, the constraint procedure will be

summarized first, using a slightly mocdified notation.

18




a) Constraint Method

To minimize E

<‘E,&§E>/<\'E)\P> subject to

{8, MT>/LE T>

Moo= =0 (60)
we define
‘ﬂ) = h+ AM 61)
and let
Ey = <EAES/LE,E> (62)

be the minimum value of the expectation value of ﬂ>‘ with respect
to variations S‘E . The value of the Lagrange multiplier )‘ v

for which (60) is valid is given by

dEy /AN = 0. (63)
Expanding E>\ in a perturbation series gives
Ey = € + ) m + YWEP+ ... (64)
where m = <'\1L,c/'(_\f> = Eg\l) is the expectation value

of M. for the unconstrained wave function. Assuming m is small,

it follows from equation (63) that

(2) + ...

A = - m/2E, ) (65)

19



20,

and therefore the energy loss due to constraining is

AE, = E, - € = /e B2 4L (66)

(2)

The second-order coefficient Ey is given by equation (41).
Substituting for M from equation (59), and replacing the approximate

coefficient by the exact one, equation (41) becomes

E(f) = - (W%, (h— e>w5/> < 0. (67)
Since E§\2) is clearly negative, this confirms that AEA is
positive.
The change in an expectation value [S'L) due to constraining

is given by equation (32), or

DLy - —w{bPRe ED 4 : (70)

(1,1
EX

The exact form of whentJ(, has the commutator form (59) is

(1, 1)

NI R (71)

b) Variation Method

The hypervirial theorem for '1yL is satisfied by the variational

function

, ‘ Y (72)

if the trial energy




Eq = <\P%)'L\£7>/<qmgﬂ> (73)

; . . 10 . .
is stationary with respect to the parameter 01 . Substituting

equation (72) into equation (73) we get

-/

E»l =<x/,lﬁ>.1‘y/> (74)

where

41 C—C"Zw‘ﬁ_ ef'\Z’W\)

i

=4 + o ([&,W] w5 W TR W T ] 4L )

The perturbation expansion of E}L is therefore
B LE(:.) -
E,.L = €& % 'vtm - Y 1 (76)
where
2
2% = i< DTy >, 77)

If E(ze is replaced by the coefficient in which }L is an exact

eigenfunction of 4%, with eigenvalue €& , then

(2)
E
1

<WY,(h—e)YWVYS> >0

)

g2
Ey - (78)

21
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0 and assuming m is small we get

Setting dE"T /d«l

-m/ZE(z) + 9 (79)

"1

and therefore the energy gain due to varying is

AE..l

-mz/’-fE,(,l?')+-~-. 5

1]

- AEy, o+ ... (80)

The energy gain on varying is thus equal and opposite to the energy
loss on constraining, to the leading order in perturbation theory.

The expectation value of an operator I is given by
Ly = <\I/TI’\L1> /<\£~L,\£‘> ;

= <¢);(n1)7L > (81)

where

- = -C"[w cy W
L e e % ,

=L + Wl + 0. (62

Hence the change due to the variation is

ALy 7 <YL, WIS O,

o Kl wl >
2 €.

...,

-AL> + . .. (83)
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The leading changes in expectation values are therefore also equal
and opposite for the two methecds. This result suggests that it
would be desirable to choose an approximate yﬁ so that the

(1,1)

coefficient E vanishes; that is, that the expectation value
of the commutator of F and W vanishes. However, this is not in
general true for the exact wave function. If it were true, then
expectation values would possess a stationary property, which alas
is not so.

We are therefore left with the somewhat unsatisfactory
situation that "yer pays yer money and yer takes yer choice'. It
can, of course, be argued that the v -variation procedure
outlined above is artificial. The variational freedom implicit in
the approximate wave funcfion yﬂ has been frozen while varying n,
If these variations were allowed to interact, the changes AL
in expectation values might turn out to have the same sign. However,
in this case detailed information is needed about the effect of
the hypervirial operator 1@F on the subspace of the variational
function described by 43, and it is not possible to estimate changes

in the simple way developed above.

MULTIPLE CONSTRAINTS

The theory can be generalized to cover the imposition of many

constraints of the form

M§ B <‘£>°I4~§ \I’>/<‘I',\§> = My (S=1,2,.57). (84)




Let E be the expectation value of the fictitious Hamiltonian
# = K + % Mg (Mg - pgd (85)

for a variational wave function q? . Then the generalized
cons:trained variational principle is that E is stationary with‘
respect to variations in \I_/ (minimum) and with respect to
variations in all the )\g (maximum). Alternatively, if

E(A,LN,,. -,)\p) is the value of E which is stationary with
respect to S\If for arbitrary >\§ , then the constraint conditions

determining the latter are
VE/3ng =0 (x=1,2,..,9). (86

The perturbation series for the energy change due to the

cor;straints is
- 3
AE %AEEE + 7{% Mg Ay B, + 0O 6D

where the superscripts denoting the order have been omitted. Since

Y AE /}Xg = M.S - I it follows ’from equation (87) that

E T < A/A,S (88)

where A/AS = My - Ms is the error in the free variational
expectation value of C/‘{S . The Lagrange multipliers are

therefore given by the equations

24




25

Dps = 22 MaEgy + OCY) (Tri,2,.,9).(89
(!

Hence, solving approximately for the A and substituting into
P ¥ g

equation (87) gives

-1
AE = — ¢ %% bpg Exq Bpy + OB, (90)

-1 . . .
where EI~L is the Eﬂl-element of the inverse of the matrix of
elements E‘g"l . The change AL in an unconstrained
expectation value L due to muitiple constraints is similarly

easily shown to be

8L = 27 by By Eg o+ O8Y). (91)
L]

For the linear variational function (12) the coefficients

occurring in equations (90) and (91) are given by

(
- = M o M to / - ’
E§4l _Z_ C §>J( ‘l,)J : E"lL _,_z (ﬂb _ o (92)
J

J eo‘e"

J 63""6",'

ALTERNATIVE PERTURBATION SCHEMES

The perturbation approach developed above corresponds to the
Rayleigh-Schrgdinger perturbation theory. It is the simplest
perturbation scheme and has the merit of providing explicit
formulae for quantities of interest. However, in practice it may

happen that although the conditions for a perturbation approach




-
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are satisfied, in that D E and A/\A are small and AE = O(%uz)
the RayleighnSchr'c;dinger series converges toc slowly to be useful.
This can occur if there is a low-lying excited state for which the
expectation value of M differs considerably from the ground
state value, M ¢ . In such cases the alternative perturbation
schemes of Brillouin-Wignerll, Feimberg11 or Sasal’{awa12 or the
partitioning technique of ngdin13 may converge more rapidly, and
may be used when the variational function is of the type (12).

The structure of the Brillouin-Wigner series is particularly

simple; the first terms in AE are

' MO'Z
AE = — M — -2 | i + o). (93)

J B AN -p)

In principle thie must be solved iteratively. However, AE
, '2- . . . .
is of order A , s0 for simplicitly the approximation (not exact

to order A 2)

= 94
E = €, —2Abpm (9%)
may be used in the denominators in equation (93) to give

/ 2
AE = ——XA/«N N\ ___\ﬁ‘ji‘__ + 00 (95)

d éjo "'-AMJJ"

11. See A. Dalgarno, ''Stationary Perturbation Theory', Chap. 5,
171 and D. R. Bates (ed.) Quantum Theory, 1, Academic Press,
New York (196 ).

12, Sasakawa, J. Math. Phys. 4, 970 (1963)..
4]
13. P. 0. Lowdin, J. Mol. Spec. 10, 12 (1963); ibid., 14, 112 (1964).
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where %'o = CS -~ €, . The Lagrange parameter/\ can be obtained from the
equation dAE (AN = 0 by solving iteratively, in the spirit of the

Brillouin-Wigner theory.

APPLICATION TO LITHIUM HYDRIDE

To illustrate the application of the perturbation approach and
also to examine its range of validity, the theory has been applied to
Robinson'sl4 calculations cn lithium hydride, which were chosen by
Rasiel and Whitman2 in their study of the constrained variational
method. Robinson's work is based on a three-term open-shell
configuration interaction function with a basis set of six Sléter
type atomic orbitals. The minimum total molecular energy obtained
by Robinson differs from the expeéerimental value of -219.71 eV by
only 0.47 eV, and the equilibrium distance is 3.0133 Bohr, which
agrees with the experimental value.* However, the expectation values
of operators are not nearly so good. 1In particular, the calculated
dipole moment is 4.157 D (H ~» Li) which differs from the experimental
value of 5.881 D by 29 per cent; the expectation value of the total
force on the molecule, which should vanish by the Hellmann-Feynman
theorem, is 0.698 au. (H —> Li); the quantity 2K + U , which should

vanish by the virial theorem, is =0.550 au.

14. J. M. Robinson, Jr., Ph.D. Thesis, University of Texas,
Austin (1957).

* Robinson's work has been surpzssed in accuracy by the recent
28-term calculation; using a mixed orbital.basis set, of
J. C. Browne and F. A. Matsen, Phys. Rev. 135, A1227 (1964).



N
. o 2 . . , e . .
Rasiel and Whitman~ constrained Robinson's variational function

to reproduce the experimental dipole moment by setting [B/L_ =
1.724 D = 0.678 au. . They calculated an increase in
energy QAE due to the constraint of oniy 0.00506 au. or about
0.14 eV. The expectation values of the operators they considered
improved quite markedly in the cases where the value is known. In
particular the constrained expectation value of the total force was
reduced to 0.277 au.

In order to check the range of validity of the perturbation
approach, the calculations performed by Rasiel and Whitman were
repeated using the formulae derived in this paper. The value -29.66

for the coefficient E(Q)

was obtained from equation (24) by
substituting the matrix elements MOj calculated from Robinson's
*
1 . . : .
results by Rasiel. > The first approximation for AE, equation

(23), then gives 0.00387 au. or about 0.11 eV compared with the
correct value 0.14 eV found by Rasiel and Whitman. The inequality
(26) can be applied in this case to find out if the higher terms
can be neglected, as LiH possesses a low-lying excited state.

The inequality becomes: 0.68 << 1.55. Since this is not strictly
15. Y. Rasiel, Ph.D. Thesis, Case Institute of Technology (1964),
and private communication.

% This corresponds to a value of the polarizability parallel to
the LiH axis of 8.8 A3, which is over twice as large as the
approximate value 3.76 A3 calculated by H. J. Kolker and
M. Karplus, J. Chem. Phys. 39, 2011 (1963). These authors
think their method already overestimates ¢X , so that the
replacement of £(2) by its experimental value would be in
error by over a factor of two. '

au.
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satisfied, the convergence of the perturbation series was checked

as follows. A was calculated by inverting equation (20) correctly

through third order in 8 = Cyk/ZE(z)

A

\

0 — (REV/2e¥)0* + 2[(38%e®) — (e ]0® + 0(s%)

(96)

= -0.0114 - 0.0034 - 0.0002 + ... )

= -0.0150,

This value was then substituted into equation (17) through terms

in XV :

AE

— Mg+ NED 4 NED L NEY £ 00%) oD

+0.01017 - 0.00667 + 0.00175 - 0.00020 + ...,

= +0.00504 .

The final agreement with Rasiel and Whitman is excellent, but the
convergence of the Rayleigh-Schrgdinger series is only moderately
fast. The first order correction to the total force F due to

constraint was calculated from equation (32). The appropriate

*
49.60 au. was obtained by substituting the matrix

The exact value of the coefficient E(l’l), given by equation (51),

is 4 for LiH. This is a warning that the use of theoretically
or experimentally known values of the exact coefficients in
estimating the effects of constraints may be very wide of the mark.



elements for MOj and Foj calculated by Rasie113 into equation
(33). This leads to AF T -0.567 or F(constrained) = 0.131 au.,
which is to be compared with Rasiel and Whitmanzz F(constrained) =
0.277 au. 1In this case the leading term in the perturbation formula
gives the correct sign and order of magnitude for AL, but higher
order terms would be needed to compute it with precision.

The particular constraint used by Mukher ji and Karplusl and by
Rasiel and Whitmanz, namely, that the dipole moment shall have the
observed value, spoils the absolute character of the theoretical
calculation by introducing an empirical element. This criticism
camot be made of the constraint that the total force F wvanishes,
since it is a theoretical requirement of the Hellmann-Feynman theorem.
It is therefore interesting to use the perturbation formulae to
find the cost in energy AFE of the constraint F = 0, and its effect
on the calculated dipole moment. The quantity ﬂ»Nx is now
AF = -0.698 av. and the appropriate E(z) = -65.96, so that
substitution in equation (23) gives AE = 0.00184 au. or about

0.05 eV. Pursuing the terms of higher order to check convergence,

the value of A given by equation (96)is

>
i

+0.00529 - 0.00089 - 0.00054 +

+0.00386 .

When this value is substituted into equation (97) along with the

appropriate values for the coefficients E(z), etc., the result is

30




of the same symmetry or similar functional behavicur are applied any
approximate wave function will inevitably become distorted and
unreliable. However, future interest is focussed on the posgibility
of applying only a few different types of theoretical constraint

and calculating the effect on a wide variety of other properties.
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AE

]

+0.00269 - 0.00098 - 0.00008 - 0,00004 -+ ..,

+0.00159 au.

or about 0.04 eV. The convergence is therefore satisfactory,
and the first approximation for the change AWM in the dipole
moment given by equation (32) may be presumed dominant. The value

Of E(ljl)

is the same as before, and the result is AM = 0.262 au,
or M (constrained) = 4.83 D, which is in error by about 18 per
cent. The effect of constraining the total force is, therefore, to

x
improve the calculated dipole moment by about 9 per cent

, for a
negligible change in energy of about 0.04 eV. The improvement is not

striking, but neither is it negligible.

DISCUSSION

The perturbation approach presented here should provide a
rapid and easy way to estimate possible improvements to be gained
by modifying variational wave functions and the cost thereof.
However, the application to lithium hydride shows, first, that
attention must be paid to the convergence of the series to guarantee
reliability; and second, that the substitution of the exact values
of the perturbation coefficients for the variational values may

be unreliable.

With regard to multiple constraints, clearly as more constraints
* Y. Rasiel (private communication) has calculated BE and - AM by
the iterative method of reference 2. He obtains AE= + 0.00150 au.
or 0.04 eV, and M(constrained) = 4.75 D. The agreement is thus
very good.




